Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Cell Rep ; 43(4): 114052, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38573860

RESUMO

Skeletal muscles exert remarkable regenerative or adaptive capacities in response to injuries or mechanical loads. However, the cellular networks underlying muscle adaptation are poorly understood compared to those underlying muscle regeneration. We employed single-cell RNA sequencing to investigate the gene expression patterns and cellular networks activated in overloaded muscles and compared these results with those observed in regenerating muscles. The cellular composition of the 4-day overloaded muscle, when macrophage infiltration peaked, closely resembled that of the 10-day regenerating muscle. In addition to the mesenchymal progenitor-muscle satellite cell (MuSC) axis, interactome analyses or targeted depletion experiments revealed communications between mesenchymal progenitors-macrophages and macrophages-MuSCs. Furthermore, granulin, a macrophage-derived factor, inhibited MuSC differentiation, and Granulin-knockout mice exhibited blunted muscle hypertrophy due to the premature differentiation of overloaded MuSCs. These findings reveal the critical role of granulin through the relayed communications of mesenchymal progenitors, macrophages, and MuSCs in facilitating efficient muscle hypertrophy.

2.
Nature ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658756

RESUMO

The liver is the main gateway from the gut, and the unidirectional sinusoidal flow from portal to central veins constitutes heterogenous zones, including the periportal vein (PV) and the pericentral vein zones1-5. However, functional differences in the immune system in each zone remain poorly understood. Here intravital imaging revealed that inflammatory responses are suppressed in PV zones. Zone-specific single-cell transcriptomics detected a subset of immunosuppressive macrophages enriched in PV zones that express high levels of interleukin-10 and Marco, a scavenger receptor that sequesters pro-inflammatory pathogen-associated molecular patterns and damage-associated molecular patterns, and consequently suppress immune responses. Induction of Marco+ immunosuppressive macrophages depended on gut microbiota. In particular, a specific bacterial family, Odoribacteraceae, was identified to induce this macrophage subset through its postbiotic isoallolithocholic acid. Intestinal barrier leakage resulted in inflammation in PV zones, which was markedly augmented in Marco-deficient conditions. Chronic liver inflammatory diseases such as primary sclerosing cholangitis (PSC) and non-alcoholic steatohepatitis (NASH) showed decreased numbers of Marco+ macrophages. Functional ablation of Marco+ macrophages led to PSC-like inflammatory phenotypes related to colitis and exacerbated steatosis in NASH in animal experimental models. Collectively, commensal bacteria induce Marco+ immunosuppressive macrophages, which consequently limit excessive inflammation at the gateway of the liver. Failure of this self-limiting system promotes hepatic inflammatory disorders such as PSC and NASH.

3.
Cancer Sci ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659235

RESUMO

N6-methyladenosine (m6A) is an RNA modification involved in RNA processing and widely found in transcripts. In cancer cells, m6A is upregulated, contributing to their malignant transformation. In this study, we analyzed gene expression and m6A modification in cancer tissues, ducts, and acinar cells derived from pancreatic cancer patients using MeRIP-seq. We found that dozens of RNAs highly modified by m6A were detected in cancer tissues compared with ducts and acinar cells. Among them, the m6A-activated mRNA TCEAL8 was observed, for the first time, as a potential marker gene in pancreatic cancer. Spatially resolved transcriptomic analysis showed that TCEAL8 was highly expressed in specific cells, and activation of cancer-related signaling pathways was observed relative to TCEAL8-negative cells. Furthermore, among TCEAL8-positive cells, the cells expressing the m6A-modifying enzyme gene METTL3 showed co-activation of Notch and mTOR signaling, also known to be involved in cancer metastasis. Overall, these results suggest that m6A-activated TCEAL8 is a novel marker gene involved in the malignant transformation of pancreatic cancer.

4.
Diagn Pathol ; 19(1): 63, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650013

RESUMO

BACKGROUND: Squamous cell carcinoma (SCC) of the dorsum of the tongue is extremely rare, and it clinically resembles various benign lesions. Somatic mutations in TP53 and some driver genes were implicated in the development of SCC; however, the somatic genetic characteristics of dorsal tongue SCC remain unknown. With a detailed analysis of gene mutations in dorsal tongue SCC, we aimed to better understand its biology. METHODS: Four cases of SCC initially occurring on the tongue dorsum were evaluated for clinical and histological findings and immunohistochemical expression of p53 and p16. Gene mutations were analyzed using next-generation sequencing with a custom panel of driver genes. RESULTS: We retrospectively investigated 557 cases of tongue SCC, and only four cases of SCC initially occurred on the tongue dorsum. The four patients (cases 1-4) were one woman and three men with a mean age of 53.75 years (range: 15-74 years). Histological analysis revealed well-differentiated SCC. Through molecular analysis, we identified pathogenic somatic mutations, namely, TP53 p.C176F (c.527G > T) in case 3 and TP53 p.R282W (c.844 C > T) in case 4. No pathogenic variants were identified in the PI3K/AKT or RAS/RAF pathways. The p53 immunohistochemical examination revealed a wild-type expression pattern in cases 1-3 and strong expression in case 4. The results of p16 immunostaining were negative in all cases. CONCLUSIONS: We described four previously unreported genetic characteristics of dorsal tongue SCC. Somatic TP53 mutations may contribute to the development of a subset of dorsal tongue SCC; however, more cases with genetic analysis need to be accumulated.

5.
Proc Natl Acad Sci U S A ; 121(12): e2312322121, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38478683

RESUMO

RN7SL1 (RNA component of signal recognition particle 7SL1), a component of the signal recognition particle, is a non-coding RNA possessing a small ORF (smORF). However, whether it is translated into peptides is unknown. Here, we generated the RN7SL1-Green Fluorescent Protein (GFP) gene, in which the smORF of RN7SL1 was replaced by GFP, introduced it into 293T cells, and observed cells emitting GFP fluorescence. Furthermore, RNA-seq of GFP-positive cells revealed that they were in an oncogenic state, suggesting that RN7SL1 smORF may be translated under special conditions.


Assuntos
Peptídeos , Partícula de Reconhecimento de Sinal , Partícula de Reconhecimento de Sinal/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peptídeos/metabolismo
6.
Emerg Infect Dis ; 30(4): 665-671, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38413242

RESUMO

Clostridium butyricum, a probiotic commonly prescribed in Asia, most notably as MIYA-BM (Miyarisan Pharmaceutical Co., Ltd.; https://www.miyarisan.com), occasionally leads to bacteremia. The prevalence and characteristics of C. butyricum bacteremia and its bacteriologic and genetic underpinnings remain unknown. We retrospectively investigated patients admitted to Osaka University Hospital during September 2011-February 2023. Whole-genome sequencing revealed 5 (0.08%) cases of C. butyricum bacteremia among 6,576 case-patients who had blood cultures positive for any bacteria. Four patients consumed MIYA-BM, and 1 patient consumed a different C. butyricum-containing probiotic. Most patients had compromised immune systems, and common symptoms included fever and abdominal distress. One patient died of nonocclusive mesenteric ischemia. Sequencing results confirmed that all identified C. butyricum bacteremia strains were probiotic derivatives. Our findings underscore the risk for bacteremia resulting from probiotic use, especially in hospitalized patients, necessitating judicious prescription practices.


Assuntos
Bacteriemia , Clostridium butyricum , Probióticos , Humanos , Clostridium butyricum/genética , Japão/epidemiologia , Estudos Retrospectivos , Probióticos/efeitos adversos , Bacteriemia/epidemiologia
7.
Microbiol Spectr ; 12(4): e0285923, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38415690

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes several host proteases to cleave the spike (S) protein to enter host cells. SARS-CoV-2 S protein is cleaved into S1 and S2 subunits by furin, which is closely involved in the pathogenicity of SARS-CoV-2. However, the effects of the modulated protease cleavage activity due to S protein mutations on viral replication and pathogenesis remain unclear. Herein, we serially passaged two SARS-CoV-2 strains in Vero cells and characterized the cell-adapted SARS-CoV-2 strains in vitro and in vivo. The adapted strains showed high viral growth, effective S1/S2 cleavage of the S protein, and low pathogenicity compared with the wild-type strain. Furthermore, the viral growth and S1/S2 cleavage were enhanced by the combination of the Δ68-76 and H655Y mutations using recombinant SARS-CoV-2 strains generated by the circular polymerase extension reaction. The recombinant SARS-CoV-2 strain, which contained the mutation of the adapted strain, showed increased susceptibility to the furin inhibitor, suggesting that the adapted SARS-CoV-2 strain utilized furin more effectively than the wild-type strain. Pathogenicity was attenuated by infection with effectively cleaved recombinant SARS-CoV-2 strains, suggesting that the excessive cleavage of the S proteins decreases virulence. Finally, the high-growth-adapted SARS-CoV-2 strain could be used as the seed for a low-cost inactivated vaccine; immunization with this vaccine can effectively protect the host from SARS-CoV-2 variants. Our findings provide novel insights into the growth and pathogenicity of SARS-CoV-2 in the evolution of cell-cell transmission. IMPORTANCE: The efficacy of the S protein cleavage generally differs among the SARS-CoV-2 variants, resulting in distinct viral characteristics. The relationship between a mutation and the entry of SARS-CoV-2 into host cells remains unclear. In this study, we analyzed the sequence of high-growth Vero cell-adapted SARS-CoV-2 and factors determining the enhancement of the growth of the adapted virus and confirmed the characteristics of the adapted strain by analyzing the recombinant SARS-CoV-2 strain. We successfully identified mutations Δ68-76 and H655Y, which enhance viral growth and the S protein cleavage by furin. Using recombinant viruses enabled us to conduct a virus challenge experiment in vivo. The pathogenicity of SARS-CoV-2 introduced with the mutations Δ68-76, H655Y, P812L, and Q853L was attenuated in hamsters, indicating the possibility of the attenuation of excessive cleaved SARS-CoV-2. These findings provide novel insights into the infectivity and pathogenesis of SARS-CoV-2 strains, thereby significantly contributing to the field of virology.


Assuntos
COVID-19 , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Animais , Chlorocebus aethiops , Humanos , Células Vero , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Furina/metabolismo
8.
Hum Pathol ; 145: 48-55, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367816

RESUMO

Venous malformations (VMs) are the most common vascular malformations. TEK and PIK3CA are the causal genes of VMs, and may be involved in the PI3K/AKT pathway. However, the downstream mechanisms underlying the TEK or PIK3CA mutations in VMs are not completely understood. This study aimed to identify a possible association between genetic mutations and clinicopathological features. A retrospective clinical, pathological, and genetic study of 114 patients with VMs was performed. TEK, PIK3CA, and combined TEK/PIK3CA mutations were identified in 49 (43%), 13 (11.4%), and 2 (1.75%) patients, respectively. TEK-mutant VMs more commonly occurred in younger patients than TEK and PIK3CA mutation-negative VMs (other-mutant VMs), and showed more frequent skin involvement and no lymphocytic aggregates. No significant differences were observed in sex, location of occurrence, malformed vessel size, vessel density, or thickness of the vascular smooth muscle among the VM genotypes. Immunohistochemical analysis revealed that the expression levels of phosphorylated AKT (p-AKT) were higher in the TEK-mutant VMs than those in PIK3CA-mutant and other-mutant VMs. The expression levels of p-mTOR and its downstream effectors were higher in all the VM genotypes than those in normal vessels. Spatial transcriptomics revealed that the genes involved in "blood vessel development", "positive regulation of cell migration", and "extracellular matrix organization" were up-regulated in a TEK-mutant VM. Significant genotype-phenotype correlations in clinical and pathological features were observed among the VM genotypes, indicating gene-specific effects. Detailed analysis of gene-specific effects in VMs may offer insights into the underlying molecular pathways and implications for targeted therapies.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Malformações Vasculares , Humanos , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Estudos Retrospectivos , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Malformações Vasculares/genética , Malformações Vasculares/patologia , Mutação , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Genômica
9.
Cell Genom ; 4(2): 100473, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38359792

RESUMO

CD4+ T cells are key mediators of various autoimmune diseases; however, their role in disease progression remains unclear due to cellular heterogeneity. Here, we evaluated CD4+ T cell subpopulations using decomposition-based transcriptome characterization and canonical clustering strategies. This approach identified 12 independent gene programs governing whole CD4+ T cell heterogeneity, which can explain the ambiguity of canonical clustering. In addition, we performed a meta-analysis using public single-cell datasets of over 1.8 million peripheral CD4+ T cells from 953 individuals by projecting cells onto the reference and cataloging cell frequency and qualitative alterations of the populations in 20 diseases. The analyses revealed that the 12 transcriptional programs were useful in characterizing each autoimmune disease and predicting its clinical status. Moreover, genetic variants associated with autoimmune diseases showed disease-specific enrichment within the 12 gene programs. The results collectively provide a landscape of single-cell transcriptomes of CD4+ T cell subpopulations involved in autoimmune disease.


Assuntos
Doenças Autoimunes , Transcriptoma , Humanos , Transcriptoma/genética , Linfócitos T , Doenças Autoimunes/genética , Linfócitos T CD4-Positivos
10.
Microbiol Resour Announc ; 13(3): e0122623, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38358276

RESUMO

Extended-spectrum ß-lactamase-producing non-O1 Vibrio cholerae was isolated from edible Mastacembelus sp. in Vietnam. The genome sequence was sequenced using DNBSEQ-G400 and MinION Mk1b. A plasmid of approximately 183-kb encoding blaCTX-M-55 and blaTEM-1 was detected.

11.
J Pathol Transl Med ; 58(1): 22-28, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38229431

RESUMO

BACKGROUND: Follicular tumors include follicular thyroid adenomas and carcinomas; however, it is difficult to distinguish between the two when the cytology or biopsy material is obtained from a portion of the tumor. The presence or absence of invasion in the resected material is used to differentiate between adenomas and carcinomas, which often results in the unnecessary removal of the adenomas. If nodules that may be follicular thyroid carcinomas are identified preoperatively, active surveillance of other nodules as adenomas is possible, which reduces the risk of surgical complications and the expenses incurred during medical treatment. Therefore, we aimed to identify biomarkers in the invasive subpopulation of follicular tumor cells. METHODS: We performed a spatial transcriptome analysis of a case of follicular thyroid carcinoma and examined the dynamics of CD74 expression in 36 cases. RESULTS: We identified a subpopulation in a region close to the invasive area, and this subpopulation expressed high levels of CD74. Immunohistochemically, CD74 was highly expressed in the invasive and peripheral areas of the tumor. CONCLUSIONS: Although high CD74 expression has been reported in papillary and anaplastic thyroid carcinomas, it has not been analyzed in follicular thyroid carcinomas. Furthermore, the heterogeneity of CD74 expression in thyroid tumors has not yet been reported. The CD74-positive subpopulation identified in this study may be useful in predicting invasion of follicular thyroid carcinomas.

12.
Acute Med Surg ; 11(1): e923, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213715

RESUMO

Aim: Altered gut microbiota has been proposed as one of the causes of exacerbation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2/COVID-19) from the perspective of the gut-lung axis. We aimed to evaluate gut microbiota in mechanically ventilated patients with COVID-19 prior to using antibiotics. Methods: We retrospectively selected for enrollment COVID-19 patients who required mechanical ventilation on admission but who had not used antibiotics before admission to observe the influence of SARS-Cov-2 on gut microbiota. Fecal samples were collected serially on admission and were evaluated by 16S rRNA gene deep sequencing. Results: The phylum of Bacteroidetes decreased, and those of Firmicutes and Actinobacteria increased in COVID-19 patients compared with those in healthy controls (p < 0.001). The main commensals of Bacteroides, Faecalibacterium, and Blautia at the genus level were significantly decreased in the COVID-19 patients, and opportunistic bacteria including Corynebacterium, Anaerococcus, Finegoldia Peptoniphilus, Actinomyces, and Enterococcus were increased (p < 0.001). α-Diversity and ß-diversity in COVID-19 patients significantly changed compared with those in the healthy controls. Conclusion: The commensal gut microbiota were altered, and opportunistic bacteria increased in patients with severe COVID-19 who required mechanical ventilation on admission.

13.
Int Immunol ; 36(4): 167-182, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38169425

RESUMO

Forkhead box P3 (Foxp3)-expressing regulatory T (Treg) cells play essential roles in immune homeostasis but also contribute to establish a favorable environment for tumor growth by suppressing anti-tumor immune responses. It is thus necessary to specifically target tumor-infiltrating Treg cells to minimize effects on immune homeostasis in cancer immunotherapy. However, molecular features that distinguish tumor-infiltrating Treg cells from those in secondary lymphoid organs remain unknown. Here we characterize distinct features of tumor-infiltrating Treg cells by global analyses of the transcriptome and chromatin landscape. They exhibited activated phenotypes with enhanced Foxp3-dependent transcriptional regulation, yet being distinct from activated Treg cells in secondary lymphoid organs. Such differences may be attributed to the extensive clonal expansion of tumor-infiltrating Treg cells. Moreover, we found that TCF7 and LEF1 were specifically downregulated in tumor-infiltrating Treg cells both in mice and humans. These factors and Foxp3 co-occupied Treg suppressive function-related gene loci in secondary lymphoid organ Treg cells, whereas the absence of TCF7 and LEF1 accompanied altered gene expression and chromatin status at these gene loci in tumor-infiltrating Treg cells. Functionally, overexpression of TCF7 and LEF1 in Treg cells inhibited the enhancement of Treg suppressive function upon activation. Our results thus show the downregulation of TCF7 and LEF1 as markers of highly suppressive Treg cells in tumors and suggest that their absence controls the augmentation of Treg suppressive function in tumors. These molecules may be potential targets for novel cancer immunotherapy with minimum effects on immune homeostasis.


Assuntos
Neoplasias , Linfócitos T Reguladores , Humanos , Animais , Camundongos , Regulação para Baixo , Fatores de Transcrição Forkhead/metabolismo , Cromatina/metabolismo , Fator 1 de Transcrição de Linfócitos T/genética , Fator 1 de Transcrição de Linfócitos T/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/genética , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo
14.
Cancer Sci ; 115(3): 859-870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38287498

RESUMO

There are approximately 250 million people chronically infected with hepatitis B virus (HBV) worldwide. Although HBV is often integrated into the host genome and promotes hepatocarcinogenesis, vulnerability of HBV integration in liver cancer cells has not been clarified. The aim of our study is to identify vulnerability factors for HBV-associated hepatocarcinoma. Loss-of-function screening was undertaken in HepG2 and HBV-integrated HepG2.2.15 cells expressing SpCas9 using a pooled genome-wide clustered regularly interspaced short palindromic repeats (CRISPR) library. Genes whose guide RNA (gRNA) abundance significantly decreased in HepG2.2.15 cells but not in HepG2 cells were extracted using the MAGeCK algorithm. We identified four genes (BCL2L1, VPS37A, INSIG2, and CFLAR) that showed significant reductions of gRNA abundance and thus potentially involved in the vulnerability of HBV-integrated cancer cells. Among them, siRNA-mediated mRNA inhibition or CRISPR-mediated genetic deletion of INSIG2 significantly impaired cell proliferation in HepG2.2.15 cells but not in HepG2 cells. Its inhibitory effect was alleviated by cotransfection of siRNAs targeting HBV. INSIG2 inhibition suppressed the pathways related to cell cycle and DNA replication, downregulated cyclin-dependent kinase 2 (CDK2) levels, and delayed the G1 -to-S transition in HepG2.2.15 cells. CDK2 inhibitor suppressed cell cycle progression in HepG2.2.15 cells and INSIG2 inhibition did not suppress cell proliferation in the presence of CDK2 inhibitor. In conclusion, INSIG2 inhibition induced cell cycle arrest in HBV-integrated hepatoma cells in a CDK2-dependent manner, and thus INSIG2 might be a vulnerability factor for HBV-associated liver cancer.


Assuntos
Carcinoma Hepatocelular , Hepatite B , Neoplasias Hepáticas , Humanos , Vírus da Hepatite B/genética , Vírus da Hepatite B/metabolismo , Carcinoma Hepatocelular/genética , RNA Guia de Sistemas CRISPR-Cas , Neoplasias Hepáticas/genética , Linhagem Celular , Células Hep G2 , RNA Interferente Pequeno/metabolismo , Replicação Viral/genética , Hepatite B/genética , DNA Viral/genética , Proteínas de Membrana/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
15.
Commun Biol ; 7(1): 16, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177279

RESUMO

In mammals, females undergo reproductive cessation with age, whereas male fertility gradually declines but persists almost throughout life. However, the detailed effects of ageing on germ cells during and after spermatogenesis, in the testis and epididymis, respectively, remain unclear. Here we comprehensively examined the in vivo male fertility and the overall organization of the testis and epididymis with age, focusing on spermatogenesis, and sperm function and fertility, in mice. We first found that in vivo male fertility decreased with age, which is independent of mating behaviors and testosterone levels. Second, overall sperm production in aged testes was decreased; about 20% of seminiferous tubules showed abnormalities such as germ cell depletion, sperm release failure, and perturbed germ cell associations, and the remaining 80% of tubules contained lower number of germ cells because of decreased proliferation of spermatogonia. Further, the spermatozoa in aged epididymides exhibited decreased total cell numbers, abnormal morphology/structure, decreased motility, and DNA damage, resulting in low fertilizing and developmental rates. We conclude that these multiple ageing effects on germ cells lead to decreased in vivo male fertility. Our present findings are useful to better understand the basic mechanism behind the ageing effect on male fertility in mammals including humans.


Assuntos
Epididimo , Testículo , Animais , Masculino , Camundongos , Envelhecimento , Fertilidade , Mamíferos , Sêmen , Espermatogônias
16.
Mar Pollut Bull ; 198: 115812, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38043208

RESUMO

The spread of antibiotic-resistant bacteria is a global problem that should be addressed through the perspective of the "one health" concept. The purpose of this study was to determine the contamination rate of antibiotic-resistant Aeromonas spp. in fresh water river fish purchased from a fish market in Vietnam. We then defined the pattern of antibiotic resistance to assess antibiotic-resistant contamination. Antibiotic-resistant Aeromonas spp. were detected in the intestinal contents of 32 of 80 fish. blaNDM-1 was detected in seven strains. Extended-spectrum ß-lactamase and AmpC ß-lactamase-related genes were detected in 28 strains, including blaCTX-M-55, blaCTX-M-15, blaCTX-M-1, and blaDHA,blaFOX, and blaMOX. The blaNDM-1 detected in the seven Aeromonas spp. strains were found chromosomally. This finding suggests that the blaNDM gene is stable in the natural environment and may spread widely into animals and humans via Aeromonas spp. with a transposon. Our results suggest the importance of continuing to monitor carbapenemase genes in Aeromonas spp. to evaluate the possibility that they may spread in other Enterobacterales, and to elucidate the mechanism of spread.


Assuntos
Aeromonas , Humanos , Animais , Aeromonas/genética , Conteúdo Gastrointestinal , Vietnã , beta-Lactamases/genética , Proteínas de Bactérias/genética , Antibacterianos/farmacologia , Peixes/genética , Água Doce , Cromossomos , Testes de Sensibilidade Microbiana
17.
Int Immunol ; 36(4): 155-166, 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38108401

RESUMO

Ulcerative colitis (UC) is a chronic disorder of the large intestine with inflammation and ulceration. The incidence and prevalence of UC have been rapidly increasing worldwide, but its etiology remains unknown. In patients with UC, the accumulation of eosinophils in the large intestinal mucosa is associated with increased disease activity. However, the molecular mechanism underlying the promotion of intestinal eosinophilia in patients with UC remains poorly understood. Here, we show that uridine diphosphate (UDP)-glucose mediates the eosinophil-dependent promotion of colonic inflammation via the purinergic receptor P2Y14. The expression of P2RY14 mRNA was upregulated in the large intestinal mucosa of patients with UC. The P2Y14 receptor ligand UDP-glucose was increased in the large intestinal tissue of mice administered dextran sodium sulfate (DSS). In addition, P2ry14 deficiency and P2Y14 receptor blockade mitigated DSS-induced colitis. Among the large intestinal immune cells and epithelial cells, eosinophils highly expressed P2ry14 mRNA. P2ry14-/- mice transplanted with wild-type bone marrow eosinophils developed more severe DSS-induced colitis compared with P2ry14-/- mice that received P2ry14-deficient eosinophils. UDP-glucose prolonged the lifespan of eosinophils and promoted gene transcription in the cells through P2Y14 receptor-mediated activation of ERK1/2 signaling. Thus, the UDP-glucose/P2Y14 receptor axis aggravates large intestinal inflammation by accelerating the accumulation and activation of eosinophils.


Assuntos
Colite Ulcerativa , Eosinofilia , Humanos , Camundongos , Animais , Uridina Difosfato Glucose/farmacologia , Eosinófilos , Inflamação , Mucosa Intestinal , RNA Mensageiro , Glucose/efeitos adversos , Sulfato de Dextrana , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
18.
iScience ; 26(12): 108456, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38077127

RESUMO

Male fertility decreases with aging, with spermatogenic decline being one of its causes. Altered testis environment is suggested as a cause of the phenotype; however, the associated mechanisms remain unclear. Herein, we investigated the age-related changes in testicular somatic cells on spermatogenic activity. The number and proliferation of spermatogonia significantly reduced with aging in mice. Interestingly, senescence-associated ß-galactosidase-positive cells appeared in testicular endothelial cell (EC) populations, but not in germ cell populations, with aging. Transcriptome analysis of ECs indicated that senescence occurred in the ECs of aged mice. Furthermore, the support capacity of ECs for spermatogonial proliferation significantly decreased with aging; however, the senolytic-induced removal of senescent cells from aged ECs restored their supporting capacity to a comparable level as that of young ECs. Our results suggest that the accumulation of senescent ECs in the testis is a potential factor contributing to the age-related decline in spermatogenic activity.

20.
J Biol Chem ; 299(12): 105461, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37977220

RESUMO

Müller glial cells, which are the most predominant glial subtype in the retina, play multiple important roles, including the maintenance of structural integrity, homeostasis, and physiological functions of the retina. We have previously found that the Rax homeoprotein is expressed in postnatal and mature Müller glial cells in the mouse retina. However, the function of Rax in postnatal and mature Müller glial cells remains to be elucidated. In the current study, we first investigated Rax function in retinal development using retroviral lineage analysis and found that Rax controls the specification of late-born retinal cell types, including Müller glial cells in the postnatal retina. We next generated Rax tamoxifen-induced conditional KO (Rax iCKO) mice, where Rax can be depleted in mTFP-labeled Müller glial cells upon tamoxifen treatment, by crossing Raxflox/flox mice with Rlbp1-CreERT2 mice, which we have produced. Immunohistochemical analysis showed a characteristic of reactive gliosis and enhanced gliosis of Müller glial cells in Rax iCKO retinas under normal and stress conditions, respectively. We performed RNA-seq analysis on mTFP-positive cells purified from the Rax iCKO retina and found significantly reduced expression of suppressor of cytokinesignaling-3 (Socs3). Reporter gene assays showed that Rax directly transactivates the Socs3 promoter. We observed decreased expression of Socs3 in Müller glial cells of Rax iCKO retinas by immunostaining. Taken together, the present results suggest that Rax suppresses inflammation in Müller glial cells by transactivating Socs3. This study sheds light on the transcriptional regulatory mechanisms underlying retinal Müller glial cell homeostasis.


Assuntos
Células Ependimogliais , Proteínas do Olho , Proteínas de Homeodomínio , Homeostase , Retina , Fatores de Transcrição , Animais , Camundongos , Células Ependimogliais/metabolismo , Proteínas do Olho/genética , Proteínas do Olho/metabolismo , Gliose/genética , Gliose/metabolismo , Gliose/patologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Homeostase/genética , Retina/citologia , Retina/crescimento & desenvolvimento , Retina/metabolismo , Retina/patologia , RNA-Seq , Tamoxifeno/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...